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1 Models With Additional Thermodynamical Parameters

1.1 Recap

Suppose we have two thermodynamical systems with energy functions Φn : Mn → [0,∞)

and Φ̃n : M̃n → [0.∞). Then

λn

({
1

n
Φn ∈ I

})
= exp

(
n · sup

x∈I
s(x) + o(n)

)
,

λ̃n

({
1

n
Φn ∈ I

})
= exp

(
n · sup

x∈I
s̃(x) + o(n)

)
.

We are studying what happens when we put the systems in thermal contact and constrain
them so that the total energy is ≈ nE. In equilibrium, energy split between the systems
is decided by maximizing s(x) + s̃(E − x). If the exponent functions s, s̃ are differentiable,
then the condition is

s′(x) = s̃′(E − x).

Hence, we denote 1
s′(x) as the thermodynamic temperature of the first system at energy

x. In physics, the dependence of s on energy per particle x and any other parameters in
the model is known as the fundamental relation of the system.1

1.2 Fundamental relation and equivalence of ensembles

In a laboratory, suppose we constrain the temperature of a system to be T = 1/β (instead
of controlling the total energy). Now we can look for energy per particle as a the root of
the equation s′(x) = β if you know the fundamental relation of the system.2

1In practice, it may be easier to describe s∗ instead.
2You can run into trouble here if s has any flat regions.
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Alternatively, if we are also expecting equivalence of ensembles, we can make predictions
about other thermodynamical quantities based directly on the canonical ensemble/the
Gibbs measure

dµn,β(p) =
e−βΦn(p) dλn(p)

Zn(β)
.

Note that the microcanonical ensemble is determined by the total energy you’re constrain-
ing around, while the canonical ensemble is determined by the temperature. So in this case,
we can determine the behavior of the system using temperature, which is the quantity we
can actually control in a lab.

1.3 Gas in a piston chamber

Example 1.1. Suppose we have gas in a chamber, where at one end, there is a piston.
Assume the piston is frictionless.

If the piston can slide back and forth, then it will be not moving when the gas inside
is at the same pressure as the atmospheric pressure of the air outside the box. Thus, our
system has an additional parameter, which can be modeled using the force on the piston,
the pressure of the gas, or the total volume v of the chamber.

We’ll begin our discussion with this example as the model, and then we will abstract
out what we need to discuss general models with additional parameters. For simplicity,
we will assume the area of the piston equals 1. How can we understand the dependence
between the pressure and the volume from the fundamental relation?

Let’s consider n “non-interacting” classical particles. The total energy of a particle
with position r and momentum p is

ϕ(r, p) = ϕpot(r) +
1

2
|p|2,

and the total energy of the system is

Φn(r1, . . . , rn, p1, . . . , pn) =
n∑
i=1

ϕ(ri, pi).
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We will now include the volume v as a parameter in all these functions. Assuming the
particles bounce off the walls elastically3, we want to relate the pressure of the gas to the
volume of the chamber. Forces are obtained as gradients of total potential energy, so the
force on the piston is

∂

∂v
Φn(v, r1, . . . , rn, p1, . . . , pn) =

n∑
i=1

∂ϕpot(v, ri)

∂v
.

For most states (r1, . . . , rn, p1, . . . , pn), this will be accurately predicted by〈
n∑
i=1

∂ϕpot

∂v
(v, ·), µn,I

〉
,

where µn,I is the microcanonical ensemble. Or, if we have equivalence of enesmbles, this is
predicted by 〈

n∑
i=1

∂ϕ

∂v
(v, ·), µn,β

〉
,

where µn,β is the canonical ensemble.
To understand this, look at

∂

∂v
s∗(v, β) =

∂

∂v

{
1

n
log

∫
e−βΦn(v,·) dλn

}
=

1

n

∫
−β ∂Φn

∂v e
−βΦn dλn∫

e−βΦn dλn

= − 1

n
β

〈
∂Φn

∂v
, µn,β

〉
.

So
∂

∂v
F (v, β) =

〈
∂Φn

∂v
, µn,β

〉
,

where
F (v, β) = −n

β
s∗(v, β) = Tns∗(v, β).

This is known as the free energy, the Helmholtz function, or the Helmholtz free
energy. So the pressure is

P =
∂

∂v
F (v, β) =

∂

∂v
[−T logZn(v, β)].

Here is another way to get this in terms of s itself:

3In reality, there is a repulsive force that is weak unless the particles are very close together, in which
case it becomes very strong.
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Lemma 1.1. If s(v, x) is strictly concave in β and C2 in both parameters, then

∂

∂v
s∗(v, β) =

∂

∂x
s(v, x).

Proof. Here is a proof by picture. Draw s(v, x) and s(v + dv, x):

Recall that s∗(v, β) is the vertical-axis intercept when we draw the tangent line to s at
x. Here, β = s′(x). On the tangent line to the new blue curve in this picture, the slope
maybe changed a little bit. Instead, find a place where a tangent of the same slope hits the
blue curve and consider the difference of those intercepts. The difference between these
changes in the intercept end up being a second order difference, so they disappear in the
derivative.

Once we know s, this leads to equations that relate V, P, T or V, P,E, etc. Once you
have any two parameters, you can solve for the third. Any such equation is called an
equation of state.
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